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Hopf bifurcation in a leaky faucet experiment
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In a leaky faucet experiment an inverse Hopf bifurcation was observed, as one increases the
water flux, before the occurrence of the continuous flow. For values of the drop rate smaller than
the critical drop rate, the movement is periodic or quasiperiodic with a finite amplitude of the time
series. At the critical point the amplitude of the time series vanishes and it suggests the bifurcation

point as the threshold of the continuous flow.
PACS number(s): 05.45.+b, 47.52.+j

In a leaky faucet experiment [1-6], complex dynamical
behavior has been observed which includes quasiperiodic-
ity, intermittencies, and chaos as well as boundary crisis.
Recently [6], the occurrence of a boundary crisis has been
detected experimentally in drop-to-drop interval time se-
ries where a sudden change occurs from a chaotic move-
ment to a period-5 movement. Starting from this late
state (f = 38.42 drops/s) and increasing the water flow
rate we got a sequence of 17 time series corresponding to
different drop rates. The sequence finishes when the wa-
ter flux at the laser level becomes continuous (f = 39.7
drops/s). The evolution from periodic to quasiperiodic
movement is shown in Fig. 1 where return maps ¢, vs
t, of nine among the 17 drop rates are displayed. The
quasiperiodic character can be inferred during the con-
struction of the return maps, the points appearing in a
clockwise sense. In Fig. 2 are shown the Fourier trans-

forms of these 17 pseudotemporal series.

In Fig. 3 we show the periods of the pseudotemporal
series, determined from the Fourier analysis, as a function
of the mean drop rate. The first six series have a period
of 7o = 5 drops and the quasiperiodic sequence starts
around the seventh series. The period 7 increases with
the drop rate f toward the value 7; = 6 drops. Since
the period of each series might be an irrational number
we will make use of a Farey tree construction [7] to find
the best rational number which describes the period. We
organize the rationals between 79 = 5 and 7; = 6 drops
by constructing the fractions 7(p,q) = (p7o + qm1)/(p +
q) where p and ¢ are integers. They are 7(1,0) = 5,
7(0,1) = 6, 7(1,1) = 11/2, 7(2,1) = 16/3, 7(1,2) =
17/3 drops, and so on. To find the components (p, q) for
a given time series t,, n = 1,2,3,..., N, we proceed as
follows. We divide this series into a certain number of
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FIG. 1. Nine-returns maps tn4+1 Vs tn
showing the evolution from periodic behav-
ior to quasiperiodic movement. The insets
at the top left are the mean drop rate value.
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subseries of length T'. We superpose all the subseries by
shifting them to the same interval [1,7] and by adding
them up to get a new series of length T'.

The new time series ,(T') is defined by

K

- 1

t(T) = i1 ) " teries (1)
k=0

where K equals the integer part of (N/T — 1) and N is
the total number of drops in the whole time series. From
this new time series we calculate the average

1 &
m(T) = 2 3 5(T) 2)
£=1

and the mean square deviation d(T") defined by
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FIG. 3. Period of the 17 pseudotemporal series obtained
from the Fourier transforms versus the mean drop rate.

FIG. 2. The Fourier transform amplitudes
of the 17 pseudotemporal series as a function
of the mean drop rate.

T
A(T) = | 2 S elT) — m(T)2. (3)
£=1

Due to the superposition of the subseries, the function
d(T) displays a multitude of peaks which might be of the
same height, as shown in Fig. 4, or of different heights, as
can be seen in Fig. 5. Each peak can be associated with
a unique value of the pair of Farey components (p, q); if
there is more than one possible pair, we choose the one
with p + ¢ = min, but p - g # 0 for quasiperiodic series.
The best pair is chosen as the one corresponding to the
highest local peak near the period given by the Fourier
analysis. If there is more than one peak with the same
height, we choose the one corresponding to the least sum
p+aq.

For periodic series, the function d(T') shows peaks of
the same intensity when T is a multiple of the funda-
mental period. This is shown in Fig. 4 for the case where

0.0

FIG. 4. d vs T of a periodic series with 7 = 5 drops.
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FIG. 5. d vs T of a quasiperiodic series, and the Farey com-
ponents (p,q) (* means that there is more than one possible
pair). The first maximum occurs at the pair in boldface, at
T = 49/9 drops.

f = 38.55 drops/s. The values of (p, q) for the peaks are
(1,0), (2,0), (3,0), etc. We choose the first one which
corresponds to 79 = 5 drops. For a quasiperiodic series,
as shown in Fig. 5 for the case of f = 39.56 drops/s,
the majority of the peaks are of different intensity. The
three largest peaks are of the same height and are associ-
ated with the following Farey components: (5,4), (3,12),
(4,13). We choose the first one which gives 7 = 49/9. Ta-
ble I shows the estimation of 7 given by this procedure
with the corresponding Farey components (p, q) together
with 7 determined from the Fourier analysis.

A Hopf bifurcation [8] is described by the two-
dimensional map (r,8) — (r,6’) where
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v =1+ d(u— po)lr + ar® (4)
and
¢ =0+ c+ br?, (5)

where p is the control parameter, pg is the critical control
parameter, and a, b, ¢, and d are constants. In the present
case it is appropriate to choose d to be negative and a to
be positive. Thus, as long as u < po the map displays a
limit cycle of radius 7o given by

7= L o) (©)

and the rotation number

w=rc+br2 (7)
or yet
b|d
w=ct+ M o). (8)

The corresponding period 7 will be 7 = 27 /w.

We have identified the control parameter as the drop
rate and the radius of the limit cycle as half the mean am-
plitude of the pseudotime series. More precisely we have
set u = f and ro = (tmae — tmin)/2, Where tiae (tmin)
is the mean value of t calculated in the last (first) bin
of a ten-bin histogram. In Fig. 6 we show the plot of r2
versus f. From a linear fitting, predicted by Eq. (6), we
obtained the critical drop rate fo = 39.705 drops/s. Fig-
ure 7 shows the rotation number 1/7 versus r2 together
with a linear fitting predicted by Eq. (8). The data in
both figures are well aligned, indicating that a Hopf bi-
furcation indeed takes place. The bifurcation is actually

TABLE I. The second column shows 7 as obtained from the Fourier analysis as a function of
the drop rate. The last column displays 7o = (5p + 6q)/(p + q) where the pairs (p, q) are the Farey

components obtained from the d(7T') analysis.

f (drops/s) 7 (drops)=+0.03
38.42 5.00
38.44 5.00
38.55 5.00
38.60 5.00
38.79 5.00
38.91 5.00
39.04 5.02
39.08 5.02
39.19 5.09
39.20 5.12
39.32 5.22
39.40 5.30
39.48 5.39
39.56 5.45
39.58 5.48
39.65 5.75
39.69 5.79

1 0 5

1 0 5

1 0 5

1 0 5

1 0 5

1 0 5

1 0 5

1 0 5

9 1 5.1

7 1 5.125
7 2 5.222...
5 2 5.285...
3 2 5.4

5 4 5.444...
1 1 5.5

1 3 5.75

1 4

5.8
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FIG. 6. r2 vs f. The continuous line is the linear curve fit to
the experimental data. The critical drop rate is fo = 39.705
drops/s.

an inverse one since one should decrease the drop rate
(from a value larger than fy) to observe the emergence
of the limit cycle in the reconstructed Poincaré section.

As our data are discrete, as in a map, the evolution
of just one frequency, and its harmonics in the Fourier
analysis, is an indication that the bifurcation might be
a secondary Hopf (or Neimark) bifurcation [9]. The two
points misaligned in Fig. 7, have time series with small
signal-to-noise ratio, which makes it difficult to define
1/7 (see relative intensities in Fig. 2). We are improving
the experimental apparatus to get a better signal-to-noise
ratio.
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FIG. 7. 77! vs r. The two misaligned points are the ones
with the least power spectra intensities shown in Fig. 2.

We have shown that in a leaky faucet experiment an
inverse secondary Hopf (or Neimark) bifurcation was ob-
served, as one increases the water flux, before the occur-
rence of the continuous flow. For values of the drop rate
smaller than the critical drop rate, the movement is peri-
odic or quasiperiodic with a finite amplitude of the time
series. At the critical point the amplitude of the time
series vanishes and we identify the bifurcation point as
the threshold of the continuous flow.
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